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Abstract

This dissertation presents and investigates a new technique for using sub-
routines in genetic programming. The technique differs from previous ideas
by having separate populations for programs and functions and evolving the
members of each concurrently. It was hoped that this technique will solve
problems as successfully as existing methods with the additional advantage of
having less structure determined in advance by the experimenter. It was also
hoped that the technique would be superior to existing methods at finding
generally useful sub-routines.

The initial algorithm was found to be better than genetic programming
techniques that don’t use sub-routines but inferior to Koza’s automatically
defined functions (ADFs). The reasons behind the performance are analysed
and three refinements are investigated. One of these improved the perfor-
mance but remained inferior to ADFs. The system was found to discover

generally useful sub-routines on successful runs.
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Chapter 1

Introduction

1.1 Automatic Programming and Genetic Pro-

gramming

Giving computers the ability to program themselves was one of the earliest
goals of computer science in general and artificial intelligence in particular.
The term “machine learning” was originally used to mean precisely this.
However the difficulty of the problem has caused the machine learning com-
munity to concentrate on more tractable problems in the meantime.

The idea of automatic programming is to have the computer generate the
program code necessary to solve the problem it is faced with. The rationale is
that computer programs are complicated (and are generally becoming more
so) and that reducing the human effort needed to produce them by having the
computer do parts will speed development and reduce the problems caused
by errors.

All machine learning techniques involve a guided search through a hy-
pothesis space. Many different search methods have been tried since the
birth of the field. The idea of using a biological approach for searching in

computer science has a long history. Turing (1950) gave the initial details of
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how this might occur.

We cannot expect to find a good child-machine at the first at-
tempt. One must experiment with teaching one such machine
and see how well it learns. One can then try another and see
if it performs better or worse. There is an obvious connection
between this process and evolution, by the identifications

Structure of the child machine = Hereditary material
Changes of the child machine = Mutations
Natural Selection = Judgement of the experimenter

Since the publication of this paper the human guided manner which Tur-
ing imagined for the search has been largely overtaken by technological ad-
vances. Modern evolutionary techniques use populations that far exceed the
size that humans can easily evaluate and improve by hand®.

Modern genetic programming was brought to the fore by John R. Koza
(1992, 1994). He adapted the technique of genetic algorithms developed by
Holland (1992) to computer programs. Genetic algorithms work using a pop-
ulation of possible solutions expressed as genomes. These are then assessed
with respect to their success in solving the problem. A new generation is pro-
duced using counterparts to biological genetic crossover and mutation. Koza
moved on from the standard linear genome structure of genetic algorithms
to use programs represented as tree structured genomes such as that shown
in figure 1.1.

The mutation and crossover operators of genetic algorithms became ma-
nipulations of subtrees of the programs. To perform crossover on two individ-
uals to produce two new individuals a random subtree from each is selected
and these are swapped. Mutation can take several forms, the most standard

being the replacement of a subtree with a new randomly created subtree.

! Although hardware abilities now clearly outstrip anything Turing could have imagined

it is interesting to see the range of techniques than are foreseen in this paper.



Other mutation operators include the permutation of the branches at a node,
and the replacement of a tree by one of its subtrees (hoist). The fitness of
individuals is calculated by their performance on a number of test cases of

the problem to be solved. For a good introduction to genetic programming

see Banzhaf et al. (1998).

Figure 1.1: A simple program represented as a tree structure. This pro-
gram can be written in lisp as (and (or(not d1) (not d2)) (or (not
d3) (not d4))).

1.2 Sub-routines in Programming

Any moderately complicated computer program uses sub-routines to simplify
the structure. This is possible because most problems can be decomposed
into smaller logically separate sub-problems. These sub-problems can be
solved and then the pieces re-assembled to give a solution to the complete
problem. Since most problems can be chunked into sub-routines, advantages

of using those chunks are



Repeated use of sub-routines can be made without error.

Sub-routines from the solution to one problem can be used in another
solution to another problem.

Structural complexity of solutions is reduced.

Parameterised sub-routines can use the same process in different situ-
ations allowing generalisation of the solution.

The breakdown into sub-routines thus speeds both the initial development
stage and subsequent debugging of programs. A procedure written once can
be checked and, once tested, is guaranteed to work whereas if the same piece
of code were being continually rewritten typographical errors would evitably
occur.

Given the advantages that subroutines bring to the human creation of
computer programs it is natural to wonder whether they have similar benefits
for the automatic generation of programs. There is also a precedent from the
building block hypothesis of genetic algorithms. This states that solutions
are found by the propagation of small above average segments of genome. If
the spread of such segments can be encouraged then the performance of the

system should be improved.

1.3 Aims

A number of techniques for using sub-routines in genetic programming have
been investigated, and these will be examined in chapter 2. The aim of this
dissertation is to examine a new method that attempts to avoid some of the
shortcomings that are apparent in these methods.

The method explored in this dissertation differs from conventional tech-
niques by having two interacting populations each of whose members are
evolving. One of the populations contains the programs and the other func-

tions that can be called by the programs. Both populations are subject to the
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usual operators used in genetic programming. The fitness of the programs
is calculated in the usual manner (ie. evaluation on a number of test cases).
The fitness of each function depends on the fitnesses of the programs that

call it.



Chapter 2
Literature Review

Since the publication of Koza (1992) and the emergence of genetic program-
ming, a number of techniques have investigated the incorporation of sub-
routines into genetic programming systems. Some of the major ideas will
be examined here. In addition the neural network work of Moriarty and
Miikkulainen which provided one of the inspirations for this thesis will be

outlined.

2.1 Automatically Defined Functions

The most widespread method for incorporating sub-routines into genetic pro-
gramming is Koza’s automatically defined functions (ADFs). These were
originally introduced by Koza (1992) and were the central theme in Koza
(1994). ADFs use a syntactically constrained tree with at least two branches
from the top node. One of these is the result producing branch that is eval-
uated to execute the program. The others contain function definitions that
can be called by the result producing branch. The equivalent program to
that given in figure 1.1 using a single ADF is shown in figure 2.1. In this
diagram everything above the dotted line is fixed and the genetic operations

only occur below the line.



Figure 2.1: The program of figure 1.1 represented as a genome with a single
ADF.

Each of the result producing branch and the function definition branches
has a distinct set of functions and terminal constants that it can use. This
restriction is primarily to stop problems caused by recursion. Since the result
producing branch (RPB) has to be able to call at least one of the ADFs, if
all branches had a common function set then at least one function would
be able to call itself. A self calling function may not necessarily lead to an
infinite recursion but over the course of an entire run it is probable that one
would arise. Depending how the problem is set up it is, however, possible to

have a hierarchy of functions that can call other functions.

Due to the distinct function and terminal sets the genetic operations on
the individual have to be constrained. All the genetic operators are limited
to act only within the body of the trees. Crossover is done by first select-
ing a branch of the same type from each of the parents and then swapping
two subtrees from within these branches. Mutation also has to preserve the
structure, so sub-tree mutation must use only the appropriate functions and

terminals for the branch it is acting upon.
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At the start of a run with a genetic programming system that uses ADFs
the number and structure of the ADFs has to be decided. This involves
deciding the function and terminal sets for each, including which ADF's can
call other ADFs.

ADFs have been shown to be superior to standard genetic programming
across a wide variety of problems. Koza (1994) analysed the performance of
ADFs against standard genetic programming on a number of problems and
generally found that the technique requires less computational power and
produces structurally simpler solutions. Kinnear (1994) compared ADFs to
both standard genetic programs and module acquisition (see section 2.3)
using the even-4-parity problem (see section 3.4) and found that ADFs out-
performed both other methods.

There are a variety of problems with this technique. One of these is that
the number of ADFs used by a trial has to be decided before the start of
the trial. This is undesirable as in many non-trivial problems it will not be
clear a priori how many functions will be needed for a reasonable solution to
the problem. In similar manner the structure of the ADF's is also decided in
advance, in the form of the number of arguments each takes and the operators
it is allowed to call. It is also not clear that the most obvious structure that
a human would use to solve the problem is the most beneficial for a genetic
programming system. Koza presents some rules of thumb for determining
the structure and the number of functions but none are totally satisfactory.
A more promising strategy is to use architecture altering operations. This is
examined in section 2.6.

A further possible flaw with this design is that the functions are inextri-
cably linked to the programs. In human programming functions from one
program are often taken and reused in other programs to solve other prob-

lems as they have been designed to be useful in a general context. It would

I The most systematic is to try several and see which works. This is clearly not ideal!

8



be advantageous if when solving problems the system could give us not only
a solution but some information as to the structure of the problem (such as a
natural hierarchy of sub-problems when one exists). This information could
be used to inform the search for solutions to related problems. In Koza’s
scheme the close knit relationship between the program and function means
that it is hard to tell what part of a function is generally useful and which
is specific to the solution being evolved. There is also little pressure on the
system to evolve generally useful functions.

There are advantages of ADFs over the other systems mentioned here.
These include that they are the only system here that can use recursion.
As mentioned above this is usually avoided but can be done with certain
safeguards. These could include limiting the space or time the program is
allow to run for, or keeping a track of the depth of the recursion and stopping
it descending below a certain point. ADFs are also simpler to implement
than several of the other systems here, such as adaptive representation. In
addition and perhaps most importantly they are known to work on a wide

variety of problems.

2.2 Encapsulation

Encapsulation was one of the earliest attempts to use sub-routines in ge-
netic programming. It was introduced by Koza (1992) as a new elementary
operator on the genome structure.

The encapsulation operator produces new terminal nodes from members
of the existing programs. To produce a new terminal a random member of
the population is selected. A non-terminal node from within this member
is then chosen. The new terminal is formed from the subtree rooted at this
node. The selected individual has the sub-tree replaced by the terminal. This

replacement has no effect on performance of the individual but means that
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the new terminal is available to spread through the population by crossover
involving that individual. The new terminal is also made available to be
introduced into the population via subtree mutation.

The transformation of the code into a terminal means that it cannot be
affected by genetic operators (as the operators act on collections of nodes
rather than the internal definition of the nodes). Thus the code is protected
and the probability of it spreading is increased. If the code performs a useful
function then this protection works to the benefit of the system.

The major problems with this approach are that only terminals are pro-
duced so the sub-routines that are being used are limited to having zero arity.
Secondly the acquisition is random, so that while a useful piece of code may
be selected it is more likely that junk code will be selected. It is therefore
currently unclear whether encapsulation has any beneficial effects for genetic

programming.

2.3 Module Acquisition

Module acquisition can be seen as a generalisation of the ideas of encapsu-
lation and was introduced by Angeline and Pollack (1992, 1993). Whereas
encapsulation produces new terminal nodes, module acquisition produces
new functions of arbritrary arity.

In encapsulation a node was selected and the subtree rooted at that node
became the new terminal. In module acquisition only the part of the subtree
up to a certain depth is taken to form the module. The parts where the
tree extends beyond this depth become the arguments of the module. As
in encapsulation the module is protected from evolution once it has been
formed. A second genetic operator of module expansion was also introduced.
This replaces the call to a module in an individual with the module definition,

allowing evolution to act on the code that was previously protected.
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Kinnear (1994) compares module acquisition to ADFs and basic genetic
programming on the even-4-parity problem (see section 3.4). In this study he
found that there was no improvement over the standard genetic programming
from using modules, and that both were substantially inferior to ADFs. He
claims similar results for a second problem aimed at evolving a generalised
sorting algorithm. It is therefore not clear that module acquisition has any
benefits although some believe that more work is needed before the technique

is discarded (Banzhaf et al., 1998).

2.4 Adaptive Representation

One of the major problems faced by both encapsulation and module acquisi-
tion is that they select the code to form new sub-routines at random. Adap-
tive representation (Rosca and Ballard, 1994) is an attempt to rectify this by
choosing blocks of code in an informed manner. In doing so it also addresses
one of the criticisms of ADFs, namely that the structure is predetermined.

Adaptive representation uses a three step method to create sub-routines.

e Useful blocks? of code are identified using an informed or heuristic
technique.

e The blocks of code are generalised by the use of parameters.

e A number of random individuals using the new sub-routines are intro-
duced to the population, replacing the least fit individuals.

The most difficult step of this procedure is the first. A number of meth-
ods have been tried including looking at the frequency of blocks or using
a measure of block fitness. Rosca and Ballard (1996) examine a two-fold

technique based on differential fitness and block activation.

2Blocks refer to pieces of code like the modules in Module Acquisition, they are subtrees
that may be pruned at a certain depth.
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Differential fitness is a heuristic that works on the principle that large
changes in fitness are likely to occur due to the introduction (or removal) of
useful blocks of code. The programs with the largest improvement in fitness
in a generation were selected and their nodes are labelled by the frequency
of their execution during the evaluation of all fitness cases. Small blocks of
codes that are frequently used in the individuals with high differential fitness

are highlighted to become the new sub-routines.

These sub-routines are then generalised by having their terminals replaced
by parameters. The sub-routines are then placed in a separate population
where they can be referenced by programs like members of the function
set. This population evolves along with the main population. The evolution
occurs by the replacement of low fitness individuals with newly created sub-

3. To evaluate the fitness of the sub-routines they are assigned a

routines
utility value. This is calculated as the mean fitness of all the programs that
have utilised the sub-routine over the past W generations (where W is some

parameter).

In experiments on a Pac-Man based problem (Rosca and Ballard, 1996;
Koza, 1992) it was shown that adaptive representation maintains a higher
diversity in the population and is superior at discovering sub-routines to
ADFs. Adaptive representation found superior solutions faster than both

ADF and standard GP.

Adaptive representation is in some ways similar to the system that is
developed in this dissertation. Both use a population of functions to try and
address the restrictions caused by the pre-determination of the structure that
occurs in techniques like ADFs. Adaptive representation has the advantage
over the system put forward in this dissertation that the function and ter-

minal sets for the evolved sub-routines and the number of arguments they

3This is not evolution in the normal sense of genetic programming, there is no crossover

and mutation of members of the function population
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take are not pre-determined. This approach is closer to the ideal method of
incorporating sub-routines, but may not be advantageous in practice.

This method has several disadvantages compared to the system put for-
ward in this dissertation. The most important is that the first step in the
algorithm, that of selecting code to form sub-routines is difficult. Using a
form of frequency analysis (such as the method put forward by Rosca and
Ballard (1996) and several variants do) runs into the problem of introns in
the evolved programs. Introns are pieces of code like (NOT (NOT ..) or
an AND call with two identical arguments, these do not affect the result of
the code but make functionally identical sections appear different to simple
pattern matching algorithms. The second disadvantage is that adaptive rep-
resentation is unable to use any form of recursion. A further difference is the
form of evolution of the sub-routine populations; in adaptive representation
the individuals do not evolve and the population does so only in the sense
that sub-routines are added and unused ones are removed. In the technique
that will be examined in this dissertation the population size is constant and

the individuals in it evolve like in the same manner as programs.

2.5 Automatically Defined Macros

A variation on ADF's that has been proposed is automatically defined macros
(ADMs) put forward by Spector (1996). Macros are operators that are im-
plemented by transformation, and defined by saying how a call to it should
be translated (for a good explanation of lisp macros see Graham (1996)). For
example the following substitution macro would cause a robot to turn until
the sense-expression returns true, and then return the value of the given

value-expression in its final orientation.

(defmacro where-sensed (sense-expression value-expression)
‘(progn (while (not ,sense-expression)
(turn))

13



,value-expression))

In the experiments by Spector (1996) only simple substitution macros
were used, and the results were contrasted with those produced by ADFs.
The semantics of ADFs and substitution ADMs are equivalent for domains
where all operators are purely functional?*. Thus there can only be an ad-
vantage from using ADMs in non-functional domains. Spector tested ADMs
against ADF's using Koza’s lawn-mower problem (Koza, 1994) without suc-
cess and successfully using a variant of the obstacle avoiding robot (Koza,
1994) and Russell and Norvig’s Wumpus World (Russell and Norvig, 1995).

These experiments contrast the abilities of ADFs and ADMs. There is
clearly a possibility for the use of both ADFs and ADMs simultaneously to
solve particularly difficult problems. However for this to be advantageous

the use of macros other than substitution macros may be required.

2.6 Architecture Altering Operations

Architecture altering operations were introduced by Koza (1995) to attempt
to reduce some of the shortcomings of ADFs. As mentioned previously one
of the main problems of ADFSs is that the structure has to be determined

beforehand. This involves a number of decisions.
e The number of functions
e The number of arguments that each function takes.

e The terminals and functions available to each function.

Architecture altering operations address the first two of these. Six new

genetic operators are introduced. These are

4A functional domain is one where two calls to the same operator with identical argu-
ments will always have the same result. For example (4 4 5) will always return 9 and so is
functional but a robot control problem is not functional as the position of the robot and

the external environment will affect sensor readings.
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e Branch duplication: A new function defining branch is added to an
individual. The initial definition of the new function is copied from
one of the previous existing functions.

e Argument duplication: The number of arguments of a function is in-
creased. The initial values of that argument in all calls is the same as
for one of the other arguments.

e Branch deletion: A function defining branch is removed from the indi-
vidual.

e Argument deletion: A function argument is removed from one of the
functions of an individual.

e Branch Creation: A new function defining branch is added to an indi-
vidual. The initial definition is a block chosen from another function
branch or the result producing branch.

e Argument Creation: A new function argument is added to one of the
functions of an individual by replacing a subtree in the function with
the new parameter. The initial values of the argument in the calls to
that function are the value of the replaced subtree.

These genetic operators are introduced much like the mutation opera-
tors of genetic programming. As a result it is clear that the population
of individuals will rapidly become structurally diverse. This means that
standard crossover techniques will not be guaranteed to produce valid off-
spring. To counter this Koza uses a technique called structure-preserving
crossover (Koza, 1994).

In (Koza, 1995) a number of runs using this technique are carried out
on the boolean even-3-parity problem. These successfully evolve individuals
to solve the problem. It is not clear from these results how the performance
compares to standard genetic programming techniques. However on problems
that are not well understood it appears that the technique could be used to

present insights into the optimal structure.
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2.7 SANE

The SANE system (Symbiotic, Adaptive Neural Evolution) was proposed by
David E. Moriarty and Risto Miikkulainen. This is not a genetic program-
ming system, however it is reviewed here because the ideas in this project
are based on the ideas that are used in SANE. The system is designed to
evolve neural networks using a genetic algorithm in a two layer structure.
At one level the individual neurons are evolved by representing their input
weights and threshold. These neurons are then combined to solve the target
problem. In the initial work on SANE the neurons were combined randomly
into the networks (Moriaty and Miikkulainen, 1996).

Later work moved on to evolve the structure for the neural network simul-
taneously with the neurons (Moriarty and Miikkulainen, 1998). This work
used a population of neurons as described above and then a population of
network blueprints that specified which neurons were to be included in the
network. The neurons were evaluated based on the average performance of
the networks they participated in.

The reproduction process for the neurons is an aggressive strategy where
for each neuron in the top 25% of the population a second member of the
top 25% is chosen to mate with it. The mating operation produces two off-
spring: a copy of one of the parents and a child from one-point crossover (the
second child is discarded). There is a small chance of mutation for the entire
population at the end of the reproduction phase. The network blueprints are
reproduced in an identical way except for mutation operators. Two muta-
tion operators are used. The first changes a neuron to a randomly chosen
neuron. The second is more selective taking a neuron that has bred and
replacing it with one of the two offspring®. This second mutation operator

was introduced to aid the system in exploring new neurons.

5This is why one of the offspring is kept identical to one of the parents - to stop this

mutation operator causing too large an adverse affect.
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Moriarty and Miikkulainen tested SANE against genetic algorithms evolv-
ing just the neurons in random combinations (similar to the original SANE)
and evolving the entire network as a single entity. The problem was to po-
sition the hand of a robot arm within 10cm of a object, using inputs from a
camera on the hand and knowledge of the three joint positions. The neuron
based approach whilst being the fastest initially generally stalled converg-
ing to suboptimal solutions. Both the network based approach and SANE
produced successful solutions with SANE being almost as fast as the neuron

based approach in the early stages.
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Chapter 3

Method

3.1 Project Aims

As outlined in chapter 2 there are a number of problems with most of the
systems used to incorporate sub-routines into Genetic Programming. The
purpose of this thesis is to put forward a new method that addresses two of
these problems. The first is the predetermination of the number of functions
that solutions are able to have. The second is to try to evolve generally useful

functions.

To achieve these aims the relationship between functions and programs
will be changed. Instead of a single population with the functions and pro-
grams sharing individuals there will be two populations (see figure 3.1). The
first population will consist of the programs, the second of functions. Each
function in the function population will have a unique identifier and can be
called by any number of programs. Conversely the programs can call any
number of functions. To evaluate the fitness of programs they will be run
on a number of test cases in the usual manner. To evaluate the fitness of
functions in this way is clearly not possible. Instead each function will be

assigned the mean fitness of the programs that call it (programs that call
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it twice being counted doubly). The evolution of the two populations will

occur concurrently.

FUNCTION PROGRAM

<> <>
O T T
P2 e O® o
(vor)  (wor)
(arcD)  (arc2)

Figure 3.1: The representation of the program from figure 1.1 represented by
the technique being investigated in this problem.

This approach is inspired by the work of David E. Moriarty and Risto
Miikkulainen on their SANE neural network system (see section 2.7). In
SANE the two populations consist of neurons (which correspond to the func-
tions) and networks composed of those neurons(corresponding to programs).
Initially it was felt that the aggressive breeding strategy of SANE was inap-
propriate to the more delicate forms of genetic programs, but this was tried
later (see section 5.3). Each program can call as many functions as it wishes
(subject to the size of the function population). The system is released from
the grip of guess work as to the optimal number, allowing evolution to decide
for itself. Since functions can be called by multiple programs there is also
more pressure on them to become generally useful.

Although several of the techniques outlined in chapter 2 use two popu-
lations the behaviour of the function population differs in all of them. All

of the techniques in chapter 2 have a function population that is initially
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empty and then has members added during the run. In contrast the system
proposed here has a constant number of members throughout the run. Also
in the established techniques once functions are added to the function pop-
ulation their internal structure is not affected by genetic operators. In the
system to be examined the population undergoes standard genetic evolution.

Since the members of the function population have to co-operate with
each other they can, like the neurons of SANE, be regarded as symbiotic
and so will be referred to throughout this project as symbiotically evolving

functions or SEFs.

3.2 Basic Algorithm

The basic algorithm that was used for the new technique is given in figure 3.2.
This algorithm is much the same as standard genetic programming except
for the incorporation of the second population.

The most important difference to standard genetic programming that
arises is that each program can reference the members of the function popu-
lation to incorporate the sub-routines. To make this sensible each member of
the function population has a unique name. When the new function popula-
tion is being generated a new function is generated by crossover or mutation
using tournament selection. A function for it to replace is chosen by picking
the loser in a separate tournament. The new function is then given the name
of the loser and takes its place in the population. Thus any program that
previously called the replaced function will now call its successor. Program
reproduction is exactly analogous to standard genetic programming.

One important factor to decide was the rate of change of the function
population with respect to the program population. The extreme cases are
a combination of being generational and being steady state; either with one

of each or both the same type. The faster one population evolves with re-
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Create initial program population P
Create initial function population F'
Repeat until termination criteria satisfied
For each program p € P
Evaluate program p
For each function f € F
For each program p € P
For each time p calls f
CallerFitnessSum(f) = CallerFitnessSum(f) + Fitness(p)
Calls(f) = Calls(f) + 1
Fitness(f) = CallerFitnessSum(f) / Calls(f)
Generate a new function population
Generate a new program population

Figure 3.2: The basic algorithm used for this thesis.

spect to the other the more emphasis there is on that population to solve
the problem. But the more it would have to work around the constraints
introduced by the second populations. To have a rapidly evolving program
population and slow functions would lead to a situation rather similar to
module acquisition (see 2.3), which has been seen to give no advantage over
standard GP. It is also hard to see the advantage of evolving the functions
quicker than the programs as then the inflexibility of the programs would
stifle the functions. It was therefore decided to evolve the programs and the
functions at approximately the same rate. To try and increase the chances
of the functions evolving into useful forms it was decided to make the evo-
lution fairly gentle by using a steady state GP algorithm with tournament

selection (Kinnear, 1994).

During the experimental trials it be came apparent that refinements to
this algorithm were needed. These are detailed in sections 5.3 and 5.4, where

the motivation for them is more obvious.
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3.3 Experiments

The experiments were carried out using the even-4-parity problem used by Kin-

near (1994). This is described in more detail in section 3.4.

It is usual to run genetic programming trials with a population of the
order of 1000 (Koza (1994) uses sizes upto 16000 on the even-3-parity prob-
lem). However the speed of a genetic programming system is heavily de-
pendent upon the size of the population (this is discussed in section 4.6).
Thus to increase the variety of experiments tried it was decided to reduce
the size of program population in order to increase the speed of the system.
However decreasing the population size has the effect of reducing the number
of individuals examined, and thus the chance of finding a solution. To give
an indication of the performance of the system on the larger populations it
was decided to use a three way comparison. To do this the SEF experiments
would be run using a program population of 250. The ADF and standard
genetic programming experiments would be run using population 250 and be
repeated with a population of 1000 (the size used by Kinnear (1994)). The
scale of performance on the ADF and standard GP should give an indication

of the scaling that would occur with SEFs!.

This three way comparison was used because SEFs are necessarily slower
and require more computational effort than the SGP and ADF techniques.
This is because although the number of newly bred programs evaluated is
the same, the actual number of programs evaluated is not. This is caused
by the changing functions; when a function is changed the behaviour of the
programs that alter it will be changed as a result. This means that more
programs are evaluated over a run compared to conventional techniques and

hence the time for the run is increased.

! This method was suggested in a discussion with John Hallam.
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3.4 Even-4-Parity Problem

The even-4-parity problem is a boolean logic problem. Given four boolean
(true/false) inputs the program should return true if an even number of them
are on and false otherwise. Although this is a simple problem to describe, a

solution is not entirely trivial.

(or
;; An even combination of d1/d2 are on and an even
;; combination of d3/d4
(and (or (and d1 d2)
(and (not di1)
(not d2)))
(or (and d3 d4)
(and (not d3)
(not d4))))
;; An odd combination of d1/d2 and an odd combination of
;; d3/d4
(and (or (and di
(not d2))
(and (not di1)
d2))
(or (and d3
(not d4))
(and (not d3)
d4)))))

Figure 3.3: A solution to the even-4-parity problem using AND, OR and
NOT with no sub-functions.

The problem was used by Koza (1994) to test ADFs against standard
GPs and Kinnear (1994) to test ADFs and standard GP against each other
and against module acquisition (see section 2.3).

It is a problem that has a natural use of functions. The structure (or
(and ..) (and ..)) can be seen to repeat in the solution and if we use
this then we can simplify the solution to that seen in figure 3.4. The function

defined is the (NOT (XOR .. ..)) in standard boolean algebra terms.
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Program = (func (func di d2)
(func d3 d4)
func(argl arg2) = (or (and argl arg2)
(and (not argl)
(not arg2)))

Figure 3.4: A solution to the even-4-parity problem using the sub-functions.

The even-n-parity problems can make use of the XOR function in a re-

cursive structure. If f,, is a solution to the even-n-parity problem then

(fosr di . dpyt) = (Xor dosr (fo di-..dn)))) (3.4.1)

and (generalising figure 3.4)

(fon dy - .. dop) = (Not (Xor (fu dy-..dp) (fn dusr...don))  (3.4.2)

and the even-2-parity function is exactly NOT XOR.

The settings used for the problem are given in table 3.1. The function
set available included the boolean operators AND, OR and NOT for all
three techniques with the terminals being the four inputs. For automatically
defined functions one ADF was added which takes two arguments and uses
AND, OR and NOT. This was chosen as it is the most natural form for the
solution to evolve to (see above). For SEFs the function set includes the

members of the SEF population which have the also take two arguments and

use AND, OR and NOT.

3.5 Expectations

Should the proposed scheme be successful in producing solutions to problems
it could have a number of advantages over standard sub-routine techniques.
The first of these is that it could highlight generally useful sub-routines, for
the test problem this is most likely to be (NOT XOR). Since each sub-routine
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Objective
Terminal set
Function set

Fitness cases
Raw Fitness

Standardised Fitness
Hits

Wrapper

Parameters

Success predicate

Evolve an expression which will return t when an even
number of arguments are t and nil otherwise.

di, d2, d3, d4 generally. argl, arg2 when using ADF or
SEF.

AND, OR, NOT throughout. May include ADFO or an SEF
for those problems.

All sixteen combinations of four boolean inputs

The number of fitness cases for which the expression fails
to generate the correct value of the even-4-parity func-
tion. Equivalent to the Hamming distance to the correct
solution.

Same as raw fitness.

Not used.

Not used.

Population size either 1000 or 250. Maximum genera-
tions = 50.

When one individual has a raw fitness of 0.

Table 3.1: The settings for the even-4-parity problem. Adapted from Kinnear

(1994).
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can be used by all programs those that are useful in a variety of situations
should prosper over those that require very exact conditions to be useful.
In a similar manner to the neurons in SANE the competition between the
functions means that if more than one function is advantageous then the
functions will have to evolve in a manner that allow co-operation between
them. In this respect it should have some of the advantages of adaptive
representation.

The system should be able to find the number of functions that are needed
to solve the problem without extra experimentation. This is in contrast to
ADF's where the optimal number of functions has to be discovered by multiple
trials.

It would also be possible to extend the technique to multiple problems si-
multaneously. This would evolve several program populations all making use
of the same function population. This would further increase the pressure to
evolve general useful sub-routines because of the slightly varying nature of the
problems. It would be most likely to work in situations where the problems
have a reasonable relationship (eg different boolean n-parity problems Koza
(1994) or the various ant trail problems Koza (1994)).

Reversing the previous idea to have multiple function populations called
by a single program population would be more useful when nothing is known
about the problem structure. It would be expected that populations that do
not have a suitable structure could be evolved out of use. This could show

some of the advantages of architecture altering techniques.
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Chapter 4

Implementation

4.1 Adaptation versus Innovation

The first design decision that had to be made was whether to adapt an
existing system or write a fresh one from scratch. There are arguments to

be made both ways in such a discussion.

An existing system has already been tested, debugged and documented.
This should make the experiments on standard genetic programming and
ADFs for comparison should be very easy to set up and run. However the
idea that is being investigated has large underlying differences from classic
GP systems; primarily the interaction of the two populations to solve the
problem. This could be arranged as a co-evolution with co-operating rather
than the more usual competing populations. Thus using an existing system
with minimal modification would require a system that already supported co-
evolution. Moreover if specialist genetic operators were later desirable then
these would have to be added to the code, which might not easily support
them.

Another requirement is that the source code for the system is firstly avail-

able and secondly comprehensible. This is desirable for a number of reasons.
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One is so that specialist operators and other code can be added if it is found
necessary. Secondly if unexpected behaviour is seen then it should be possi-
ble to check if there is a fault and where it lies. If it is found to lie within the
system it should be rectifiable (relying on writing to the system author and
then hoping that he responds within the time allowed for this project would
be a dangerous policy). The availability of the source code is not a partic-
ular difficulty. Most GP systems are non-commercial and are distributed in
source code form. The requirement for comprehensibility is more of a chal-
lenge. Most systems are written in C/C++, Java or Lisp. The author knew

none of these languages at the outset of this project!.

Four systems were looked at with a view to adapting. GPData (written
in C++), lilGP 1.1 (C), EC (Java) and the Lisp code from Koza (1994).
All of these have support for ADFs. Given ignorance of all 4 programming
languages this did not present a bias. It is a truth universally acknowledged
that the reading of somebody else’s source code is unpleasant. With this in
mind the less code there is the better. The Systems varied wildly in size. EC
is 30,000 lines, GPData and lilGP are both around 13,000, whereas Koza’s
code is a mere 1,500. Thus the decision was made to look at Koza’s code to

start with.

The examination of this suggested that it would not be an ideal starting
point. The code has been written to apply only to ADFs. (Koza used a
separate although substantially similar system to do standard genetic pro-
gramming.) This means that certain structural features (such as the number
of ADF's being two) are deeply embedded in the system. However the exam-
ination did suggest that the creation of a fresh system from scratch would

not be particularly difficult. So this was the next possibility examined.

!But did have coding experience, mainly in Pascal and Python.

28



4.2 Programming Language

If the system is to be created from scratch the choice of programming lan-
guage again rears its head. The choice was to be made from amongst C,
C++, Java, Lisp, Python and Pascal. The first four on the grounds that it
would be possible to examine previous systems for ideas when problems were
encountered. The last two being those that the author was most familiar
with at the commencement of this project.

Python is a interpreted language and although it has many nice features
has nothing to particularly recommend it for this project. Java is also (es-
sentially) interpreted and a brief look at the EC code suggested it was mod-
erately incomprehensible to a beginner if ideas from the code were needed.
C/C++ are probably the fastest languages of the group but speed was not
absolutely critical. In addition C/C++ could not be described as rapid de-
velopment languages. Lisp had several advantages over the others. Koza’s
code was short and comprehensible, and even though large parts would need
to be rewritten some could be used. Being a high-level language it is fairly
quick to develop in, but can be compiled later for further speed if necessary.
It is eminently suited for genetic programming with its easy handling of tree
and list structures. It is also very easy to learn. It was therefore decided to
design and code the system from the ground up, using Lisp and code from

Koza where possible.

4.3 Design

There were certain features that were considered desirable for the system
structure. The most important of these was that the system should be able
to work with standard genetic programs (no functions), Koza’s automati-
cally defined functions and the symbiotic functions with the minimum of

alteration. This is an important feature to enable comparisons to be made
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between the three methods being investigated. The second feature was that
the system be modular in that the problem specifications were separate files
to the main kernel of the system. This would allow easy alteration of the

problem should more than one be investigated.

The main loop for the resulting system is shown in figure 4.1. The main
loop for the classic GP system is essentially the same without the references
to the function population. The algorithm is tail recursive as this is the most
neatest way of writing it and it can be optimized to run in constant memory
by all ANSI-compliant Lisp compilers (Graham, 1996). With the decision
to use a steady state population and more specifically tournament selection
most of the rest of the design followed naturally and will not be examined

here.

(defun run-sef-gp-generations (generation
program-population
function-population)
(reset-fitness program-population)
(reset-fitness function-population)
;3 Evaluate the fitness
(evaluate-all-program-fitness program-population)
(evaluate-all-function-fitness function-population program-population)
;; Return the final populations if we’ve finished otherwise recurse
;; down.
(if (termination-predicate generation program-population)
(values generation program-population function-population)
(progn
(report-on-generation)
(run-sef-gp-generations (+ generation 1)
(breed-new-population program-population)
(breed-new-population function-population)))))

Figure 4.1: The main loop (in lisp-like pseudocode) of the GP with symbiotic
functions.
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4.4 Evaluation of Evolved Programs

Another important decision that had to be made was how to execute the pro-
duced programs, so as to build the functionality in. There are two methods of

doing this, by using the Lisp eval macro or by hand building an interpreter.

4.4.1 Using the Lisp Evaluator

It is possible to set the system up so that all functions the evolved program
can call are defined as Lisp functions (including ADFs and SEFs). The pro-
gram is then executed by a single call to eval. This is faster than hand eval-
uation. However setting up the evolved functions to be executed is harder.
In Koza’s code (Koza, 1994) this method is used but the number of ADFs is
hard coded into the kernel and so the appropriate number of functions (2)
is also included. Since it had been decided to have no problem independent

restrictions for the number of SEF's, this solution was not available.

When executing SEFs there could be several hundred and having this
number of preset functions is wasteful (especially since the number could
vary significantly during testing to find the optimal population size). It
would be possible to get around this by using a syntactic constraint on the
tree so that instead of the functions being called as (SEFxx (..) (..))
they are called as (SEF xx (..) (..)). So instead of an unique name for
each function there is a single wrapper procedure whose first argument acts
as an identifier as to which function is being called. The problem with this
approach is enforcing the constraint in the reproduction of trees; it would be
an illegal operation to replace the identifier with one of the arguments of the

function call.
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4.4.2 Hand Executing

The second solution is to use a hand coded evaluator. A simple evaluation
model of Lisp is to take the present list, evaluate each member of it and
then apply the first member to the rest (Abelson et al., 1996). When the
evaluator finds a list whose first element is an evolving function then it should
find the function and apply it appropriately. The most fundamental problem
with this method is that the simplistic evaluation model given above does not
cope with special forms and macros (for example, of the then-clause and else-
clause in an if statement, only one should be evaluated. This is particularly
important if there are operators that rely on side-effects). A second problem
is dealing with variables and scoping. A simple solution would be to declare
the variables needed by the program as global, however there is a (small)
chance that this could cause a clash with variables in the system kernel.
This is unsatisfactory as the implementor of the problem file should not have

to worry about the internal operation of the kernel beneath a certain level.

4.4.3 Compromise Solution

As far as the main kernel of the system goes the decision was to opt out. All
the details that were needed to execute the code would be made available
and the problem file would be left to deal with the details of how to use these.
While this simplifies the kernel and leaves the onus on the implementation
of the problem specification, it still left the decision to be made with regard
to the actual problems being used.

Initially it was hoped that eval calls could be used to do the problems.
While this worked for standard GPs and ADFs the execution of the SEFs
as expected proved difficult. This is due to the fact that until runtime the
number and hence the names of the SEFs are unknown. Thus the functions

are created dynamically. Although this was tried it was not successfully
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achieved.

It was therefore decided to take the slower hand-evaluation option for
SEFs and the lisp interpreter for ADFs and standard GP. The code to do
this is given in appendix B . The SEF definitions are placed in a global hash
table *sefs* and inserted as required. To deal with the problems of scoping
variables the evaluate functions are called with a progv wrapper to set all
the required variables. For the even-4-parity problem studied an if operator

was not required.

4.5 Experiment Implementation

One of the advantages of the even-4-parity problem is that it is very easy
to implement once the interpreter has been written. The problem file was
designed to pass the parameters for the run to the main program as global

variables and then provide three functions:

e termination-predicate which given the program population and the
current generation should return true if the run should be terminated
(ie. if we have exceeded the maximum number of generations or have

a correct solution).

e fitness-better-p which given two individuals should return true if
the first has a better fitness than the second. For the even-4-parity

problem better fitness has a lower value.

e evaluate-individual-fitness which given an individual returns its

fitness.

The parameters that the system returns specify the population sizes,
mutation rate, function and terminal sets for the different populations or

branches of an individual etc.
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To calculate the fitness of an individual it is evaluated with all 16 possible
input combinations and the outputs are compared to the correct values that

are stored in a look up table.

4.6 Optimization

The major problem that had to be overcome once the system was built
was speed. Genetic programming is not a fast process and with the limited
amount of time available for the project, results had to be produced reason-
ably quickly. In the initial system a run of 50 generations with a population
of 1000 using standard genetic programming with the hand coded evaluator,
would take in excess of 50 days®.

A number of approaches were tried. The parameter settings that Koza
uses for his runs were to be the base point for comparison. However he uses
very large populations, typically of the order of 1000. Since a steady state
GP is being used, this translates to 50000 iterations for 50 generations. If the
fitness of each individual is recalculated with each iteration, then the order
of the run time® is quadratic in population size (the number of iterations is
proportional to the population size for a steady state GP and then this is
also multiplied by the number of individuals to be evaluated each iteration
which is the population size). However for standard and ADF GPs there is
normally nothing that would cause the fitness of an unchanged individual
to change from one generation to the next. Thus for these strategies the
system was changed to evaluate new individuals only. This reduces the run
time to being linear with population size. For a trial run on the boolean
even-4-parity problem the time for a run was reduced by a factor of 70 (see

table 4.1)

2A run with a population of 100 took over twelve hours (see table 4.1) and with the

original system the time is proportional to the square of population.
3 Assuming that the evaluation of fitness is the biggest bottleneck in the system.
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A further increase in speed was made by compiling the Lisp source code.
For the benchmark problem this gave a further 5-fold speed increase which

makes Koza style runs far more feasible (see table 4.1).

Population Size | Time / minutes
Uncompiled, Full Evaluation 100 > 720
Uncompiled, Minimal evaluation | 100 11.1
Compiled, Minimal Evaluation 100 2.55
Compiled, Minimal Evaluation 1000 95.1

Table 4.1: Benchmark comparisons for runs of the system for standard GP.
All these runs were done on a 450MHz Pentium III with 192 Mb using Clisp
1999-07-22, using the boolean even-4-parity problem. All runs of the same

population size use the same seed, producing identical results.

While the strategy of only evaluating new individuals is possible for stan-
dard and ADF GPs, it is neither as straightforward to implement nor as time
saving for SEF's. This is because a new program will change the fitness scores
of all the functions that it calls. In addition a new function will change the
scores of all the programs which call it, in turn changing the fitness of all
the other functions that those programs call. Thus the speed up depends on
the interconnection of the programs and functions which varies from run to
run. However a lazy evaluation algorithm was implemented and gave a small
speed increase. The algorithm used is given in figure 4.2.

The second main technique used to quicken the run-times was to reduce
the population. For a steady state GP algorithm the (maximum) number of
iterations, and hence run-time is proportional to the population size. Thus
reducing the population from 1000 (as used by Kinnear (1994)) to 250 should
bring approximately a fourfold speed increase. However the downside is that
four times fewer individuals are examined and hence the probability of finding
a solution is reduced. To try and offset this the three way comparison was

carried out (see section 3.3).
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Mark new functions as unevaluated.

Mark new programs as unevaluated.

For each Program P in the program population
Find the functions Fi, ..., F,, used by P.
Ifany of Fy, ..., F, are unevaluated.

Set P as unevaluated.
For each Program P in the program population

Find the functions Fj, ..., F,, used by P.
IfP is unevaluated
Set each of Fj, ..., F, as unevaluated.

Evaluate all unevaluated programs.
Evaluate all unevaluated functions.

Figure 4.2: The algorithm used for the minimal evaluation of programs and
functions for SEFs.

Another method that was considered but not implemented was the hash-
ing of programs and their fitnesses. For this each program is associated with
a unique numeric identifier and the correspondence between this and the fit-
ness of the program is stored in a database of some form. The theory is that
the encoding of the trees and look up of the value can be carried out rapidly.
However with the implementation of the non-evaluation of old individuals
and the minimal probability of two identical individuals being reached it was

not deemed to be advantageous enough to use.

4.7 Testing

Being stochastic processed genetic programming systems are not entirely
trivial to test. However to ensure that the system was working it was possible
to carry out some tests.

The program interpreter was tested by evaluating programs whose output
was known. It was also checked by evaluating programs from actual test

runs to ensure that the system was passing all the appropriate information
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correctly.

The standard check for genetic algorithm and programming systems is to
seed the population with a solution that is known to be good and check that
it is propagated from generation to generation correctly. This was done for
the systems. However it should be noted that this is not necessarily a correct
test for the SEFs system. This is because if the solution uses a function
(as would be desirable for checking the system) there is a chance that the
function might not propagated. This would occur if the other programs that
use it do not have a particularly good fitness. If the function is replaced at
some point then the solution will be altered, probably for the worse. (The

exception to this is the monotone SEF algorithm, see section 5.4.)
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Chapter 5

Experimental Results

Since genetic programming is a stochastic process it is not possible to draw
conclusions from a single run. Instead the properties being measured should
be averaged over a number of trials. The number of trials for each of the
methods discussed here varies. The number depended on the time that was
available and the time that each took, as many trials as possible within
those constraints being carried out. The number of runs for each is given in

table 5.1.

Algorithm Population Size | Number of Runs
ADF 1000 13

ADF 250 21

SGP 1000 14

SGP 250 36

SEF, original 250 10

SEF, cross-mutation 250 11

SEF, SANE 250 40

SEF, monotone cross-mutation | 250 8

Table 5.1: The number of runs for each of the algorithms discussed.
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5.1 Control Experiments

For the purpose of making comparisons a number of runs using standard
genetic programming and automatic function definition were performed. As
discussed in section 3.3, these were done at two different population sizes.
Figure 5.1 shows the cumulative probability of finding a correct solution over
the length of a 50 generation run. From this it can be seen that with a full
size population of ADFs there is a high probability of finding a solution. As
would be expected reducing the population from 1000 to 250 reduces the
likelihood of finding a solution.

o
®
T
1

°©
3

o
=)

- == SGP, population = 250
—+—  SGP, population = 100
———  ADF, population = 250
——  ADF, population = 100D

o
1

©
~

o
w

Cumlative Probability of finding a correct solution
o
[6;]

o
[N}

Generation

Figure 5.1: Graph of the cumulative probability of finding a correct solution

to the test problem against generation for ADFs and standard GP.

In comparison to ADF's standard genetic programming struggles to find a

solution. Again as would be expected the increased population improves the
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probability of finding a solution, however both are distinctly inferior to even
the small population ADF results. The comparison between the performance
of the large population standard GP and ADFs is a similar result to those
in Kinnear (1994).

5.2 Basic Algorithm

The cumulative probability of finding a correct solution to the problem with
the algorithm described in section 3.2 in comparison to the SGP and ADF
approaches is shown in figure 5.2. From these results it can be seen that while
the technique performs better than standard GP, it is significantly worse than
ADFs.
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Figure 5.2: Graph of the cumulative probability of finding a correct solution
to the test problem for ADFs, the first SEF algorithm and SGP.

Although the superior performance compared to standard GP is promis-
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ing it would be preferable to have performance comparable to ADF's which is
not the case. To explain why this is we can examine the details of the runs.
The graph in figure 5.3 shows the fitness of the best individual at each gen-
eration, for a converged trial and a typical non-converged run. (Recall from
table 3.1 that the fitness of a converged individual is 0.) The most notable
feature of this graph is that the fitness in the typical run is not monotonically
decreasing!. This is in contrast with the normal behaviour of steady state
algorithms. In most steady state GPs the choice of a poor individual to be
replaced means that the best individual cannot be lost and so the best fitness
can not increase?. Although in SEFs the best individuals in each population
are protected it is very possible for the best program to call several functions
some of which may not have a good fitness in comparison to the rest of the
function population. If one of the functions used by the current best program
is replaced by a new function then the best fitness of the program population

will probably increase (worsen).

The chance of a good candidate program being upset by a sudden change
in one of the functions it calls is a two-edged sword. It is detrimental in that
the program population will have adapted to use the function in its previous
state (since good segments of code such as the call to that function will spread
through the population). Thus when this function is changed there is likely
to be a considerable worsening in fitness as a result. However this should
introduce a evolutionary pressure to use only a few functions, since the fewer
the number of functions used the less likely that one will be suddenly altered.
This bias towards parsimony should be beneficial to producing generally

useful functions, since it is preferred to have a few functions called repeatedly

Tt should not be assumed from the graph that only a run where the fitness of the best

individual at each generation decreases in a monotonic fashion can converge.
2The description of increasing and decreasing is with respect to the fitness method

used in this problem. If a numerically greater fitness indicates an improvement then the

descriptions of increasing or decreasing would reverse.
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rather than lots of functions each only called rarely.

It is also likely that there is another factor hampering the evolution.
When a function is reproduced its child is placed in the slot previously occu-
pied by another poorer performing individual. The newly created function
will therefore only be called by the programs that called the replaced func-
tion, in contrast to ADFs where if a new function is created it is only called
by the same program as called one of its parents. These are firstly unlikely
to be particularly good programs (as functions are regarded as performing
poorly if the programs that call them perform poorly). Secondly they are
unlikely to be using the new function in the sort of situation its parent was
used in and performed well in. Thus the function can be regarded as losing
the linkage to the calling programs and situations that made its parent use-
ful. It was this linkage that caused Moriarty and Miikkulainen to introduce
a specialist mutation into the SANE system. This operator worked in the
following manner: if a neural network was being reproduced that used one
of the reproduced neurons then with a 50% probability the reference to the

reproduced neuron was switched to reference the child (see section 2.7).

5.3 Linkage Preserving Algorithms

Since the other cause of the non-monotonic behaviour could also offer po-
tential benefits the first factor to be investigated was the linkage. To carry
out this investigation two further algorithms were tried. One was simply
the addition of a new mutation operator to the basic algorithm described
in section 3.2. The second was to completely replace the population repro-
duction method with that used in SANE (see section 2.7), with functions
corresponding to neurons and programs to networks. The algorithm is so
similar to Moriarty and Miikkulainen’s that it is not reproduced here.

The mutation operator is used after the new function and program for
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the current iteration is created. If the newly created program uses the parent
of the new function then the calls to the parent function in the new program
are switched to call the child function. This operator will be referred to as
cross-mutation. This mutation operator was applied whenever possible.

The cumulative probability of finding a solution for the two new methods
can be compared to the original algorithm, ADFs and SGP in figure 5.4.
As can be seen from this the SANE algorithm preforms poorly compared to
the original algorithm, although still better than standard GP. It is likely
that this is because as suspected the programs are rather more delicate than
the neurons that the algorithm was successful on (see section 3.1). Thus
the rapid changes to the population that the algorithm causes disrupt the
evolution away from the good solutions as much as it moves towards them.

The cross-mutation technique seems more successful, performing better
than the original method, although still not as well as ADFs. This suggests
that linkage is one of the problems that is hampering the technique, although
this technique could still be improved upon.

Structural complexity of programs can be measured in a number of ways,
such as size, number of function calls, tree depth, et cetera. The freedom
to choose from a large population of functions means that inclusive of the
function definitions SEFs are almost always going to have a greater size than
ADFs?. For a fairer comparison the number of function calls was examined
instead. The mean number of function calls made by the best solution of
each generation (over all trials and all generations) of the ADF system was
9.9. For SEFs using cross-mutation this figure was slightly lower at 8.6*. The
difference between the two is probably not significant, but suggests that SEF

3Koza (1994) uses size of solution as the sole method of comparing structural complexity

of ADFs against that of SGP.
4This is the number of function calls not the number of nominally distinct functions

used which was 4.8. The number of functions that are distinct in terms of the results they

give will probably be slightly lower and was not investigated.
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Figure 5.4: Graph of cumulative probability of finding a solution against
generation for ADFs, SGP, the original SEF algorithm and the two linkage
preserving SEF algorithms.
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solutions are in some ways no more complex than the ADF equivalent.

5.4 Monotonic Algorithm

The last technique investigated was to make the fitness of the best individual
in the cross-mutation algorithm runs become monotonic®. To do this the
function reproduction was restricted. Only functions that were not used by
the current best program were allowed to be replaced by new functions. This
restriction cannot hold if the best program uses all the functions, to deal
with this the restriction was waived if the current best program used more
the 80% of the function population. 80% is an arbitrary figure chosen to
be high enough that it should not interfere with most runs where a sensible
number of functions are being called.

It was not possible due to time constraints to carry out as many trials
for this system as for the others. Out of the eight trials that were completed
only one converged to a successful solution. This suggests that the system
is no better than the non-monotonic cross-mutation algorithm and may be
slightly worse, but the lack of trials makes firm comparisons difficult.

The feared loss of parsimony in terms of the number of functions used
occurred in at least some runs. In one run the number of functions used by
the best program exceeded 80% of the function population (ie. 40 functions)
causing the fitness to worsen. The average number of distinct functions
called by the best individual in each generation almost doubled from 4.8
for the standard cross-mutation algorithm to 9.1 (the equivalent figure for
the original SEF algorithm is 5.7), with the number of function calls also
doubling from 8.6 to 16.7.

The general trend was for the fitness to decrease more rapidly than the

5The change was applied to the cross mutation algorithm as this was the most successful

so far.
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usual cross-mutation algorithm but then become stuck at around 2 or 3
indicating premature convergence. It is possible with a larger population

size that premature convergence may be avoided.

5.5 Mean Fitness

The graph in figure 5.5 shows the mean fitness of the best individuals at each
generation. A number of features stand out on this graph.

All five algorithms start roughly equal and remain so for the first few
generations. This is as expected as at this stage the random generation of
the initial populations will dominate. The first to break away is the standard
GP, followed soon after by the original SEF algorithm which then fluctuates
around a fitness level generally 0.5 higher than SGP. The cross mutation
algorithm also fluctuates significantly, going down to the same level as ADFs
at about twenty generations. Surprisingly despite being the most successful
of the SEF algorithms tried it then finishes with the highest mean fitness at
the end of the run.

The monotone SEF algorithm and ADFs show very similar results both
having a mean fitness about 1.5 better than SGP from generation 10 onwards,
with the monotone algorithm slightly better in general. This is unexpected as
it did not perform as well at finding solutions. The monotone SEF initially
descends the most rapidly reaching a mean fitness of two after about 10
generations. However it the flattens and does not improve further over the

remainder of the trial length.
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lation (averaged over the trials carried out) at each generation for standard
GP, ADFs and three of the SEF algorithms (original, cross mutation and

monotone).
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Chapter 6

Discussion

6.1 Performance

Overall the results as given in chapter 5 are promising rather than successful.
The original algorithm and the cross mutation both appear to do substan-
tially better than standard GP but substantially worse than ADFs. Using
the scaling that is indicated by the performance of the different sized popu-
lations for SGP and ADF suggests that with a population of 1000 the cross-
mutation SEF technique would converge approximately 50% of the time on

this problem.

However there is a caveat to this optimism. The SEF algorithms take
more computational effort than the SGP and ADF methods. Although the
same number of program reproductions occur the number of programs ac-
tually evaluated is substantially higher due to the changes to the functions
they call. Thus there is an unfair advantage to SEFs on problems where the
test is done on a fixed generational span and the problem is well understood
as here. However in problems where the structure is not known this extra
computational effort may not be so problematic, as the cost of running many

unsuccessful SGP trials or a large number of ADF trials to find the correct
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structure could well be higher.

The improvement of the performance when function to program linkage
is increased by the cross-mutation operator suggests that this is one direc-
tion that could be explored further. It appears that close coupling is needed
between a program and the functions it uses for them to work in harmony.
This closeness is inherent in ADFs but has been lost to an extent in the
new technique. The methods that improved this showed an improved perfor-
mance and improving it may lead to performance rivalling ADFs with some

additional benefits.

The results using the monotone algorithm suggest that protecting func-
tions is not beneficial for the performance. The graph of mean fitness (fig-
ure 5.5) shows the typical pattern for premature convergence. This is that
the fitness descends rapidly to a plateau on which it remains for the duration
of the run. This occurs because not enough diversity is left in the population
to find a better solution. However since increasing population size is one of
the standard methods for countering premature convergence, it is likely that
increasing the population to 1000 will yield bigger benefits for this algorithm

than for the non-monotone variants.

The monotone algorithm clearly damages the parsimony (in terms of num-
ber of function calls). Parsimony is not a common concern in GP systems
as it is hard to control structural simplicity due to the existence of introns,
and sub-routine systems either have a hard limit on the number of functions
available (eg ADF's) or do not worry about the number of calls (eg adaptive
representation). However for a system such as the one investigated here it
would be preferable to have some pressure to produce smaller solutions. The
difficulty is incorporating this into the fitness in a way that does not damage

the system’s ability to solve the problem.
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6.2 Structure Discovery

The discovery of a natural program structure to solve the problem occurs
in two ways. These are the number of functions that are needed and the

definitions of those functions (see section 3.5).

6.2.1 Number of Functions

In terms of the discovery of problem structure the results overall are mixed.
Of the two most successful approaches (the original and cross-mutation) only
one run out of all those attempted used an average of less than three functions
in the best individual over the run and in terms of fitness this was one of the
worst performing runs (the fitness was never less than 5, in most runs the
lowest value over the run was about 2). The mean number of functions used
by the best program at each generation with the cross mutation technique
was 4.8 and with the original SEF algorithm was 5.7. For the monotone
technique where the functions used by the best program were protected the
mean rose to 9.1; this loss of parsimony was discussed in section 5.4.

However the use of multiple functions may not be as damaging to the
structure discovery as it appears. Two distinct functions may actually be
equivalent. (This is in fact guaranteed for the problem used here as we have
a population of 50 functions and there are only 2* = 16 distinct possible
functions.) This is another example of the intron growth that occurs in
genetic programming. There has been a large amount of research into introns
(for references see Banzhaf et al. (1998, section 7.5)). These have shown
that introns comprise around 50% of all code in the middle of GP runs and
even more towards the end. These figures suggest that the mean number of
functions used can be halved for a rough approximation of actual number of
functions used.

The existence of introns is not surprising as they act as protection against
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evolution for individuals as they propagate. However in terms of discovering
what structure has been found introns confuse the picture. To clarify the
structure the programs and the functions should be simplified at the end of
the run and the introns removed before examining the resulting structure.
However this can be a painful process. In addition judgement is sometimes
required to determine what constitutes an intron and this could reassert the
experimenters prejudices on the system.

The problem that remains from ADFs in this technique is the determina-
tion a priori of the function and terminal sets and the number of arguments
for each population of evolving functions. This could to some extent be dealt
with using multiple function populations but it is not clear how well this
would work. The system does have the advantage over all the systems in
chapter 2 other than ADFs that it can be set up for use of recursive evolved

functions (subject to the constraints outlined in section 2.1).

6.2.2 Generally Useful Functions

Examining the definitions of the functions used on successful runs shows they
do simplify to recognisable logic gates'. In one successfully converged run the
six functions used by the successful solution simplified to the following two-
input logic gates:- Argl, (NOT XOR), NAND, Arg2, (NOT Argl), (NOT
XOR). Two of these functions (one of which was the most commonly called
both in the solution and the entire population) are the NOT XOR function
that was discussed in section 3.4 as being central to the problem (the other
was the third most commonly called across the program population with the
NAND function second). This suggests that the hope of finding generally

useful functions is not in vain, and that the programs can evolve to use those

'However perhaps not too much should be read into the recognisability as with Argl,
Arg2, their complements, AND, OR, NAND, NOR, XOR and NOT XOR, T and Nil we

have 12 of the 16 available functions.
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functions.

For more conclusions to be drawn about the ability of the system to find
generally useful sub-routines more work needs be done. This should include
investigations on problems that use a richer function space. It could be
interesting to take functions evolved in one run and try them as non-evolving
functions in a separate run (probably on a slightly different problem). This
would give a good indication of the utility of the evolved sub-routines for

problems that cannot be easily analysed (eg non-functional problems).

6.3 Future Work

There are many options that can be experimented with for future work in
the topic. The most urgent is perhaps to repeat the experiments detailed
here, firstly with more trials, since 10 runs of a configuration is the bare
minimum with which to start drawing inferences. Secondly the population
size should be increased to 1000. Thirdly trials should be made on other
problems including ones that are not so well understood and/or offer a greater
wealth of functions. Should these continue to be promising then further

refinements could be investigated, such as those suggested below.

e Investigating the effect of the parameters that the system offers. The
first of these is size of function population, either absolute or relative
to the program population.Other parameters include the fitness value
for unused SEFs, and more subtly, the exact relative rates of evolution

of the two populations.

e Solving multiple problems simultaneously with a single function pop-
ulation as outlined in section 3.5. Examples of problem families that
could be susceptible to this approach include the various ant trail prob-

lems in Koza (1992, 1994) , or boolean parity problems of different sizes.
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e Further improving the linkage between newly created functions and the
programs that call their parents. This currently seems the approach
that will have the greatest beneficial effect on the ability of the system

to solve problems.

e Investigating different methods of protecting functions to give mono-
tonic or near monotonic behaviour. This could include a fitness func-
tion that took the number of functions being used into account along
with the correctness of the solution. Care is needed with such an ap-
proach to balance the requirements for a good solution and for a simple
solution. The difficulty of such a balance will depend on the type of
problem being tackled.

e Investigating the use of multiple function populations, A and B say,
where the members of population A could call the members of popu-
lation B (but not vice versa). Alternatively the functions in the differ-
ent populations could have different structures (number of arguments,

function and terminal sets).
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Chapter 7

Conclusion

The SEF technique put forward in this dissertation has not worked as well
as was hoped in terms of solving the test problem. A solution was found on
about 10% of trials compared to around 30% for ADF's, however it outper-
formed standard GP which only succeeded on 3% of trials. The technique is
also more computationally intensive than ADFs and SGP. The results of the
mean fitness comparison suggest that the monotone algorithm may scale up
to perform on a par with ADFs.

In terms of finding generally useful functions and problem structure the
results are hopeful but not conclusive. The technique needs to be tried on
problems with a greater richness of available subroutines for confirmation of
the optimism felt.

The overall conclusion is therefore that the idea is promising but more

work is needed to see if it can live up to its potential.
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Appendix A

Glossary

ADF Automatically defined functions (see section 2.1).
ADM Automatically defined macros (see section 2.5).

Cross-mutation A mutation operator introduced to try and evaluate new
functions more fairly. See section 5.3.

Generational Form of GP algorithm where the entire population is replaced
at every iteration.

Introns Sections of code that if removed from a program would not alter
the result produced. Examples include (NOT (NOT (..))) for boolean
systems or a = a + 0 for arithmetic systems.

Monotonic Changing only in one direction. Monotonic decreasing is equiv-
alent to not increasing (ie. it can includes periods of no change).

SANE Symbiotic Adaptive Neural Evolutions (see section 2.7).
SEF Symbiotic Evolving Functions, the system developed in this project.

SGP Standard genetic programming, as described in Koza (1992). No sub-
routines are used in the evolved programs.

Steady-state Form of GP algorithm where only the one individual is re-
produced each iteration.

Subtree mutation The replacement of a subtree in an individual by a ran-
domly generated subtree.
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Terminal See terminal node.

Terminal node The constants and 0-arity functions in a program. (If the
program is viewed as a tree then the terminal nodes form the leaves.)
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Appendix B

The Interpreter

The interpreter that was used to execute the evolved programs.

(defun evaluate (tree)
"Interpreter for the evolved programs."
(if (eq *problem-typex ’sef)
;; Only need to do this the hard way if dealing with SEFs.
(cond ((atom tree) (eval tree))
(t
(case (first tree)
;; Check for special forms
(and (and (evaluate (second tree))
(evaluate (third tree))))
(or (or (evaluate (second tree))
(evaluate (third tree))))

(not (not (evaluate (second tree))))

;; Only other option for this problem is an SEF.

(otherwise

(let* ((sef-name (first tree))
(definition (gethash sef-name *sefs*)))
(progv ’(argl arg2)
(1ist (evaluate (second tree))
(evaluate (third tree)))
(eval definition)))))))

;; otherwise use eval.
(eval tree)))
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